APPLICATIONS OF PSEUDO-MONOTONE OPERATORS
WITH SOME KIND OF UPPER SEMICONTINUITY
IN GENERALIZED QUASI-VARIATIONAL INEQUALITIES
ON NON-COMPACT SETS

MOHAMMAD S. R. CHOWDHURY AND KOK-KEONG TAN

(Communicated by Dale Alspach)

Abstract. Let E be a topological vector space and X be a non-empty subset of E. Let $S : X \to 2^X$ and $T : X \to 2^{E^*}$ be two maps. Then the generalized quasi-variational inequality (GQVI) problem is to find a point $\hat{y} \in S(\hat{y})$ and a point $\hat{w} \in T(\hat{y})$ such that $\text{Re} \langle \hat{w}, \hat{y} - x \rangle \leq 0$ for all $x \in S(\hat{y})$. We shall use Chowdhury and Tan’s 1996 generalized version of Ky Fan’s minimax inequality as a tool to obtain some general theorems on solutions of the GQVI on a paracompact set X in a Hausdorff locally convex space where the set-valued operator T is either strongly pseudo-monotone or pseudo-monotone and is upper semicontinuous from $\text{co}(A)$ to the weak-$*$-topology on E^* for each non-empty finite subset A of X.

1. Introduction

If X is a set, we shall denote by 2^X the family of all non-empty subsets of X and by $\mathcal{F}(X)$ the family of all non-empty finite subsets of X. Let E be a topological vector space. We shall denote by E^* the continuous dual of E, by $\langle w, x \rangle$ the pairing between E^* and E for $w \in E^*$ and $x \in E$ and by $\text{Re} \langle w, x \rangle$ the real part of $\langle w, x \rangle$. If $X \subset E$, $S : X \to 2^X$ and $T : X \to E^*$, the quasi-variational inequality problem (QVI) is to find a point $\hat{y} \in S(\hat{y})$ such that $\text{Re} \langle T(\hat{y}), \hat{y} - x \rangle \leq 0$ for all $x \in S(\hat{y})$. The QVI was first introduced by Bensoussan and Lions in 1973 (see, e.g., [2]) in connection with impulse control. Again, if we consider a set-valued map $T : X \to 2^{E^*}$, then the generalized quasi-variational inequality problem (GQVI) is to find a point $\hat{y} \in S(\hat{y})$ and a point $\hat{w} \in T(\hat{y})$ such that $\text{Re} \langle \hat{w}, \hat{y} - x \rangle \leq 0$ for all $x \in S(\hat{y})$. The GQVI was introduced by Chan and Pang [4] in 1982 if $E = \mathbb{R}^n$ and by Shih and Tan [11] in 1985 if E is infinite dimensional.

In this paper, we shall use Chowdhury and Tan’s generalized version [5, Theorem 2] of Ky Fan’s minimax inequality [8, Theorem 1] as a tool to obtain some

Received by the editors May 15, 1996 and, in revised form, March 7, 1997.

1991 Mathematics Subject Classification. Primary 47H04, 47H05, 47H09, 47H10; Secondary 49J35, 49J40, 54C60.

Key words and phrases. Generalized quasi-variational inequality, locally convex space, partition of unity, paracompact sets, lower semi-continuous, upper semi-continuous, strongly pseudo-monotone, pseudo-monotone and monotone operators.

The work of the second author was partially supported by NSERC of Canada under grant A-8096.

©1998 American Mathematical Society

2957
general theorems on solutions of the GQVI on a paracompact set \(X \) in a locally convex Hausdorff topological vector space where the set-valued operator \(T \) is strongly pseudo-monotone or pseudo-monotone and is upper semicontinuous from \(co(A) \) to the weak*-topology on \(E^* \) for each \(A \in \mathcal{F}(X) \).

We shall use our following set-valued generalization of the classical pseudo-monotone operator. The classical definition of a pseudo-monotone operator was introduced by Brézis, Nirenberg and Stampacchia in [3]. For a slightly general definition of a pseudo-monotone operator we refer to [5, Definition 1].

Definition 1.1. Let \(E \) be a topological vector space, \(X \) be a non-empty subset of \(E \) and \(T : X \rightarrow 2^{E^*} \). If \(h : X \rightarrow \mathbb{R} \), then \(T \) is said to be (1) \(h \)-pseudo-monotone if for each \(y \in X \) and every net \(\{y_\alpha\}_{\alpha \in \Gamma} \) in \(X \) converging to \(y \) with

\[
\limsup_{\alpha}[\inf_{u \in T(y_\alpha)} \text{Re}(u, y_\alpha - y) + h(y_\alpha) - h(y)] \leq 0,
\]

we have

\[
\liminf_{\alpha}[\inf_{u \in T(y_\alpha)} \text{Re}(u, y_\alpha - x) + h(y_\alpha) - h(x)] \geq \inf_{w \in T(y)} \text{Re}(w, y - x) + h(y) - h(x)
\]

for all \(x \in X \); (2) pseudo-monotone if \(T \) is \(h \)-pseudo-monotone with \(h \equiv 0 \).

2. Generalized quasi-variational inequalities for strongly pseudo-monotone operators

In this section we shall introduce the notion of strongly pseudo-monotone operators and obtain some general theorems on solutions of the GQVI on paracompact sets in locally convex Hausdorff topological vector spaces.

We shall begin with the following:

Definition 2.1. Let \(E \) be a topological vector space, \(X \) be a non-empty subset of \(E \) and \(T : X \rightarrow 2^{E^*} \). If \(h : X \rightarrow \mathbb{R} \), then \(T \) is said to be (1) strongly \(h \)-pseudo-monotone if for each continuous function \(\theta : X \rightarrow [0, 1] \), for each \(y \in X \) and every net \(\{y_\alpha\}_{\alpha \in \Gamma} \) in \(X \) converging to \(y \) with

\[
\limsup_{\alpha}[\theta(y_\alpha)(\inf_{u \in T(y_\alpha)} \text{Re}(u, y_\alpha - y) + h(y_\alpha) - h(y))] \leq 0
\]

we have

\[
\limsup_{\alpha}[\theta(y_\alpha)(\inf_{u \in T(y_\alpha)} \text{Re}(u, y_\alpha - x) + h(y_\alpha) - h(x))] \\
\geq [\theta(y)(\inf_{w \in T(y)} \text{Re}(w, y - x) + h(y) - h(x))]
\]

for all \(x \in X \); (2) strongly pseudo-monotone if \(T \) is strongly \(h \)-pseudo-monotone with \(h \equiv 0 \).

Clearly, every strongly pseudo-monotone operator is also a pseudo-monotone operator as defined in [5].

Proposition 2.1. Let \(X \) be a non-empty subset of a topological vector space \(E \). If \(T : X \rightarrow E^* \) is monotone and continuous from the relative weak topology on \(X \) to the weak* topology on \(E^* \), then \(T \) is strongly pseudo-monotone.

Proof. Let us consider any arbitrary continuous function \(\theta : X \rightarrow [0, 1] \). Suppose \(\{y_\alpha\}_{\alpha \in \Gamma} \) is a net in \(X \) and \(y \in X \) with \(y_\alpha \rightarrow y \) (and

\[
\limsup_{\alpha}[\theta(y_\alpha)(\text{Re}(Ty_\alpha, y_\alpha - y))] \leq 0.
\]
Then for any $x \in X$ and $\epsilon > 0$, there are $\beta_1, \beta_2 \in \Gamma$ with $|\theta(y_\alpha) \Re (Ty_\alpha, y_\alpha - y)| < \frac{\epsilon}{2}$ for all $\alpha \geq \beta_1$ and $|\theta(y_\alpha) \Re (Ty_\alpha, Ty_\alpha - y - x)| < \frac{\epsilon}{2}$ for all $\alpha \geq \beta_2$. Choose $\beta_0 \in \Gamma$ with $\beta_0 \geq \beta_1, \beta_2$. Thus

$$\theta(y_\alpha) \Re (Ty_\alpha, y_\alpha - x) = \theta(y_\alpha) \Re (Ty_\alpha, y_\alpha - y) + \theta(y_\alpha) \Re (Ty_\alpha, y - x)$$
$$\geq \theta(y_\alpha) \Re (Ty, y_\alpha - y) + \theta(y_\alpha) \Re (Ty_\alpha, y - x)$$
$$= \theta(y_\alpha) \Re (Ty, y_\alpha - y) + \theta(y_\alpha) \Re (Ty_\alpha - Ty, y - x) + \theta(y_\alpha) \Re (Ty, y - x)$$
$$> \frac{\epsilon}{2} - \epsilon + \frac{\epsilon}{2} + \theta(y_\alpha) \Re (Ty, y - x)$$

so that $\inf_{\alpha \geq \beta_0} \theta(y_\alpha) \Re (Ty_\alpha, y_\alpha - x) \geq -\epsilon + \inf_{\alpha \geq \beta_0} \theta(y_\alpha) \Re (Ty, y - x)$. It follows that $\limsup_{\beta} \theta(y_\beta) \Re (Ty_\beta, y_\beta - x) \geq \liminf_{\beta} \theta(y_\beta) \Re (Ty_\beta, y_\beta - x) \geq -\epsilon + \theta(\gamma) \Re (Ty, y - x)$. As $\epsilon > 0$ is arbitrary,

$$\limsup_{\beta} \theta(y_\beta) \Re (Ty_\beta, y_\beta - x) \geq \theta(\gamma) \Re (Ty, y - x).$$

Hence T is strongly pseudo-monotone.

We shall now establish the following result:

Theorem 2.1. Let E be a locally convex Hausdorff topological vector space, X be a non-empty paracompact convex subset of E and $h : E \to \mathbb{R}$ be convex. Let $S : X \to 2^X$ be upper semicontinuous such that each $S(x)$ is compact convex and $T : X \to 2^{E^*}$ be strongly h-pseudo-monotone and be upper semicontinuous from $co(A)$ to the weak* topology on E^* for each $A \in F(X)$ such that each $T(x)$ is weak*-compact convex. Suppose that the set

$$\Sigma = \{ y \in X : \sup_{x \in S(y)} \inf_{w \in T(y)} \Re (w, y - x) + h(y) - h(x) > 0 \}$$

is open in X. Suppose further that there exist a non-empty compact subset K of X and a point $x_0 \in X$ such that $x_0 \in K \cap S(y)$ and $\inf_{w \in T(y)} \Re (w, y - x_0) + h(y) - h(x_0) > 0$ for all $y \in X \setminus K$. Then there exists $\bar{y} \in K$ such that (i) $\bar{y} \in S(\bar{y})$ and (ii) there exists $\bar{w} \in T(\bar{y})$ with $\Re (\bar{w}, \bar{y} - x) \leq h(x) - h(\bar{y})$ for all $x \in S(y)$.

Proof. We divide the proof into two steps:

Step 1. There exists a point $\hat{y} \in X$ such that $\hat{y} \in S(\hat{y})$ and

$$\sup_{x \in S(\hat{y})} \inf_{w \in T(\hat{y})} \Re (w, \hat{y} - x) + h(\hat{y}) - h(x) \leq 0.$$

Suppose the contrary. Then for each $y \in X$, either $y \notin S(y)$ or there exists $x \in S(y)$ such that $\inf_{w \in T(y)} \Re (w, y - x) + h(y) - h(x) > 0$; that is, $y \notin S(y)$ or $y \in \Sigma$. If $y \notin S(y)$, then by Hahn-Banach separation theorem, there exists $p \in E^*$ such that $\Re (p, y) - \sup_{y \in S(y)} \Re (p, x) > 0$. For each $y \in X$, set $\gamma(y) := \sup_{x \in S(y)} \inf_{w \in T(y)} \Re (w, y - x) + h(y) - h(x)$. Let $V_0 := \{ y \in X : \gamma(y) > 0 \} = \Sigma$ and for each $p \in E^*$, set $V_p := \{ y \in X : \Re (p, y) - \sup_{x \in S(y)} \Re (p, x) > 0 \}$.

Then $X = V_0 \cup \bigcup_{p \in E} V_p$. Since each V_p is open in X by Lemma 1 in [11] and V_0 is open in X by hypothesis, $\{ V_0, V_p : p \in E^* \}$ is an open covering for X. Since X is paracompact, there is a continuous partition of unity $\{ \beta_0, \beta_p : p \in E^* \}$ for X subordinated to the open cover $\{ V_0, V_p : p \in E^* \}$ (see, e.g., Theorem VIII.4.2 of Dugundji in [7]); that is, for each $p \in E^*$, $\beta_p : X \to [0, 1]$ and $\beta_0 : X \to [0, 1]$ are continuous functions such that for each $p \in E^*$, $\beta_p(y) = 0$ for all $y \in X \setminus V_p$ and $\beta_0(y) = 0$ for all $y \in X \setminus V_0$ and $\{ \supp \beta_0, \supp \beta_p : p \in E^* \}$ is locally finite and $\beta_0(y) + \sum_{p \in E^*} \beta_p(y) = 1$ for each $y \in X$. Note that for each $A \in F(X)$, h is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
continuous on \(co(A) \) (see e.g. [10, Corollary 10.1.1, p.83]). Define \(\phi : X \times X \to \mathbb{R} \) by

\[
\phi(x, y) = \beta_0(y) \left[\min_{w \in T(y)} Re(w, y - x) + h(y) - h(x) \right] + \sum_{p \in E^*} \beta_p(y) Re(p, y - x)
\]

for each \(x, y \in X \). Then we have the following.

(1) Since \(E \) is Hausdorff, for each \(A \in F(X) \) and each fixed \(x \in co(A) \), the map \(y \mapsto \min_{w \in T(y)} Re(w, y - x) + h(y) - h(x) \) is lower semicontinuous on \(co(A) \) by Lemma 3 in [5] and the fact that \(h \) is continuous on \(co(A) \) and therefore the map \(y \mapsto \beta_0(y) [\min_{w \in T(y)} Re(w, y - x) + h(y) - h(x)] \) is lower semicontinuous on \(co(A) \) by Lemma 3 in [12]. Also for each fixed \(x \in X \), \(y \mapsto \sum_{p \in E^*} \beta_p(y) Re(p, y - x) \) is continuous on \(X \). Hence, for each \(A \in F(X) \) and each fixed \(x \in co(A) \), the map \(y \mapsto \phi(x, y) \) is lower semicontinuous on \(co(A) \).

(2) For each \(A \in F(X) \) and for each \(y \in co(A) \), \(\min_{x \in A} \phi(x, y) \leq 0 \). Indeed, if this were false, then for some \(A = \{ x_1, \cdots, x_n \} \in F(X) \) and some \(y \in co(A) \) (say \(y = \sum_{i=1}^n \lambda_i x_i \) where \(\lambda_1, \cdots, \lambda_n \geq 0 \) with \(\sum_{i=1}^n \lambda_i = 1 \), we have \(\min_{1 \leq i \leq n} \phi(x_i, y) > 0 \). Then for each \(i = 1, \cdots, n \),

\[
\beta_0(y) \left[\min_{w \in T(y)} Re(w, y - x_i) + h(y) - h(x_i) \right] + \sum_{p \in E^*} \beta_p(y) Re(p, y - x_i) > 0
\]

so that

\[
0 = \phi(y, y) = \beta_0(y) \left[\min_{w \in T(y)} Re(w, y - \sum_{i=1}^n \lambda_i x_i) + h(y) - h(\sum_{i=1}^n \lambda_i x_i) \right] + \sum_{p \in E^*} \beta_p(y) Re(p, y - \sum_{i=1}^n \lambda_i x_i)
\]

\[
\geq \sum_{i=1}^n \lambda_i \beta_0(y) \left[\min_{w \in T(y)} Re(w, y - x_i) + h(y) - h(x_i) \right] + \sum_{p \in E^*} \beta_p(y) Re(p, y - x_i) > 0,
\]

which is a contradiction.

(3) Suppose \(A \in F(X) \), \(x, y \in co(A) \) and \(\{ y_\alpha \}_{\alpha \in \Gamma} \) is a net in \(X \) converging to \(y \) with \(\phi(tx + (1 - t)y, y_\alpha) \leq 0 \) for all \(\alpha \in \Gamma \) and all \(t \in [0,1] \).

Then for \(t = 0 \) we have \(\phi(y, y_\alpha) \leq 0 \) for all \(\alpha \in \Gamma \), i.e.,

\[
\beta_0(y_\alpha) \left[\min_{w \in T(y_\alpha)} Re(w, y_\alpha - y) + h(y_\alpha) - h(y) \right] + \sum_{p \in E^*} \beta_p(y_\alpha) Re(p, y_\alpha - y) \leq 0
\]

for all \(\alpha \in \Gamma \). Hence

\[
\limsup_{\alpha} [\beta_0(y_\alpha) \left(\min_{w \in T(y_\alpha)} Re(w, y_\alpha - y) + h(y_\alpha) - h(y) \right)] + \liminf_{\alpha} \left(\sum_{p \in E^*} \beta_p(y_\alpha) Re(p, y_\alpha - y) \right)
\]

\[
\leq \limsup_{\alpha} [\beta_0(y_\alpha) \left(\min_{w \in T(y_\alpha)} Re(w, y_\alpha - y) + h(y_\alpha) - h(y) \right)] + \sum_{p \in E^*} \beta_p(y_\alpha) Re(p, y_\alpha - y) \leq 0.
\]
Thus by (2.1) and (2.2), we have
\[h \text{ is strongly } \alpha \text{ for all } y. \]
Consequently, whenever \(\beta \phi \), we have
\[\limsup_{T(y)} [\beta_0(y) (\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x))] \leq 0. \]
Therefore \(\limsup_{T(y)} [\beta_0(y) (\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x))] \leq 0. \) Since \(T \) is strongly \(h \)-pseudo-monotone, we have
\[\limsup_{T(y)} [\beta_0(y) (\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x))] \geq \beta_0(y) (\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x)). \]
Thus
\[\limsup_{T(y)} [\beta_0(y) (\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x))] + \sum_{p \in E^*} \beta_p(y) Re\langle p, y - x \rangle \geq \beta_0(y) (\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x)) + \sum_{p \in E^*} \beta_p(y) Re\langle p, y - x \rangle. \]
For \(t = 1 \) we have \(\phi(x, y) \leq 0 \) for all \(\alpha \in \Gamma \), i.e.,
\[\beta_0(y) [\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x)] + \sum_{p \in E^*} \beta_p(y) Re\langle p, y - x \rangle \leq 0 \]
for all \(\alpha \in \Gamma \). Therefore
\[\limsup_{T(y)} [\beta_0(y) (\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x))] + \liminf_{\alpha} \sum_{p \in E^*} \beta_p(y) Re\langle p, y - x \rangle \leq \limsup_{T(y)} [\beta_0(y) (\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x))] + \sum_{p \in E^*} \beta_p(y) Re\langle p, y - x \rangle \leq 0. \]
Thus
\[\limsup_{T(y)} [\beta_0(y) (\min_{w \in T(y)} Re\langle w, y - x \rangle + h(y) - h(x))] + \sum_{p \in E^*} \beta_p(y) Re\langle p, y - x \rangle \leq 0. \]
Hence by (2.1) and (2.2), we have \(\phi(x, y) \leq 0. \)
(4) By hypothesis, there exist a non-empty compact (and therefore closed) subset \(K \) of \(X \) and a point \(x_0 \in X \) such that \(x_0 \in K \cap S(y) \) and \(\inf_{w \in T(y)} Re\langle w, y - x_0 \rangle + h(y) - h(x_0) > 0 \) for each \(y \in X \setminus K \). Thus for each \(y \in X \setminus K \),
\[\beta_0(y) [\inf_{w \in T(y)} Re\langle w, y - x_0 \rangle + h(y) - h(x_0)] > 0 \]
whenever \(\beta_0(y) > 0 \) and \(Re\langle p, y - x_0 \rangle > 0 \) whenever \(\beta_p(y) > 0 \) for \(p \in E^* \). Consequently,
\[\phi(x_0, y) = \beta_0(y) [\inf_{w \in T(y)} Re\langle w, y - x_0 \rangle + h(y) - h(x_0)] + \sum_{p \in E^*} \beta_p(y) Re\langle p, y - x_0 \rangle > 0 \]
for all \(y \in X \setminus K \).
Then ϕ satisfies all hypotheses of Theorem 2 in [5]. Hence by Theorem 2 in [5], there exists a point $\hat{y} \in K$ such that $\phi(x, \hat{y}) \leq 0$ for all $x \in X$; i.e.,

$$\beta_0(\hat{y}) \left[\inf_{w \in T(\hat{y})} Re\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x) \right] + \sum_{p \in E^*} \beta_p(\hat{y}) Re\langle p, \hat{y} - x \rangle \leq 0$$

for all $x \in X$.

If $\gamma(\hat{y}) = 0$, choose any $\hat{x} \in S(\hat{y})$; if $\gamma(\hat{y}) > 0$, choose any $\hat{x} \in S(\hat{y})$ such that

$$\inf_{w \in T(\hat{y})} Re\langle w, \hat{y} - \hat{x} \rangle + h(\hat{y}) - h(\hat{x}) \geq \frac{\gamma(\hat{y})}{2} > 0.$$

If $\beta_0(\hat{y}) > 0$, then $\hat{y} \in V_0 = \Sigma$ so that $\gamma(\hat{y}) > 0$; it follows that

$$\beta_0(\hat{y}) \left[\inf_{w \in T(\hat{y})} Re\langle w, \hat{y} - \hat{x} \rangle + h(\hat{y}) - h(\hat{x}) \right] > 0.$$

If $\beta_p(\hat{y}) > 0$ for some $p \in E^*$, then $\hat{y} \in V_p$ and hence $Re\langle p, \hat{y} \rangle > \sup_{y \in S(\hat{y})} Re\langle p, y \rangle$

$$\geq Re\langle p, \hat{y} - \hat{x} \rangle > 0.$$

Then note that $\beta_p(\hat{y}) Re\langle p, \hat{y} - \hat{x} \rangle > 0$ whenever $\beta_p(\hat{y}) > 0$ for $p \in E^*$.

Since $\beta_0(\hat{y}) > 0$ or $\beta_p(\hat{y}) > 0$ for some $p \in E^*$, it follows that

$$\phi(\hat{x}, \hat{y}) = \beta_0(\hat{y}) \left[\inf_{w \in T(\hat{y})} Re\langle w, \hat{y} - \hat{x} \rangle + h(\hat{y}) - h(\hat{x}) \right] + \sum_{p \in E^*} \beta_p(\hat{y}) Re\langle p, \hat{y} - \hat{x} \rangle > 0,$$

which contradicts (2.3). This contradiction proves Step 1.

Step 2. There exists a point $\hat{w} \in T(\hat{y})$ such that $Re\langle \hat{w}, \hat{y} - x \rangle + h(\hat{y}) - h(x) \leq 0$ for all $x \in S(\hat{y})$.

Note that for each fixed $x \in S(\hat{y})$, $w \mapsto Re\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x)$ is convex and continuous on $T(\hat{y})$ and for each fixed $w \in T(\hat{y})$, $x \mapsto Re\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x)$ is concave on $S(\hat{y})$. Thus by Kneser’s Minimax Theorem in [9] (see also Aubin [1, pp.40-41]), we have

$$\min_{w \in T(\hat{y})} \max_{x \in S(\hat{y})} [Re\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x)] = \max_{x \in S(\hat{y})} \min_{w \in T(\hat{y})} [Re\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x)].$$

Hence $\min_{w \in T(\hat{y})} \max_{x \in S(\hat{y})} [Re\langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x)] \leq 0$ by Step 1. Since $T(\hat{y})$ is compact, there exists $\hat{w} \in T(\hat{y})$ such that $Re\langle \hat{w}, \hat{y} - x \rangle + h(\hat{y}) - h(x) \leq 0$ for all $x \in S(\hat{y})$.

If X is compact, we obtain the following immediate consequence of Theorem 2.1:

Theorem 2.2. Let E be a locally convex Hausdorff topological vector space, X be a non-empty compact convex subset of E and $h : E \to \mathbb{R}$ be convex. Let $S : X \to 2^X$ be upper semicontinuous such that each $S(x)$ is closed convex and $T : X \to 2^{E^*}$ be strongly ρ-pseudo-monotone and be upper semicontinuous from $co(A)$ to the weak*-topology on E^* for each $A \in \mathcal{F}(X)$ such that each $T(x)$ is weak*-compact convex. Suppose the set $\Sigma = \{ y \in X : \sup_{y \in S(\hat{y})} [\inf_{w \in T(\hat{y})} Re\langle w, y - x \rangle + h(y) - h(x)] > 0 \}$ is open in X. Then there exists $\hat{y} \in X$ such that (i) $\hat{y} \in S(\hat{y})$ and (ii) there exists $\hat{w} \in T(\hat{y})$ with $Re\langle \hat{w}, \hat{y} - x \rangle \leq h(x) - h(\hat{y})$ for all $x \in S(\hat{y})$.

Note that if X is also bounded in Theorem 2.1, the map $S : X \to 2^X$ is, in addition, lower semicontinuous and for each $y \in \Sigma$, T is upper semicontinuous at y in X, then the set Σ in Theorem 2.1 is always open in X as can be seen in the proof of the following:
Theorem 2.3. Let E be a locally convex Hausdorff topological vector space, X be a non-empty paracompact convex and bounded subset of E and $h : E \to \mathbb{R}$ be convex. Let $S : X \to 2^X$ be continuous such that each $S(x)$ is compact convex and $T : X \to 2^{E^*}$ be strongly h-pseudo-monotone and be upper semicontinuous from $co(A)$ to the weak*-topology on E^* for each $A \in \mathcal{F}(X)$ such that each $T(x)$ is weak*-compact convex. Suppose that for each $y \in \Sigma = \{ y \in X : \sup_{x \in S(y) \setminus T(y)} \inf_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x) > 0 \}$, T is upper semicontinuous at y from the relative topology on X to the strong topology on E^*. Suppose further that there exist a non-empty compact subset K of X and a point $x_0 \in X$ such that $x_0 \in K \cap S(y)$ and

$$\inf_{w \in T(y)} \Re \langle w, y - x_0 \rangle + h(y) - h(x_0) > 0$$

for all $y \in X \setminus K$. Then there exists $\hat{y} \in K$ such that (i) $\hat{y} \in S(\hat{y})$ and (ii) there exists $\hat{w} \in T(\hat{y})$ with $\Re \langle \hat{w}, \hat{y} - x \rangle \leq h(x) - h(\hat{y})$ for all $x \in S(\hat{y})$.

Proof. By virtue of Theorem 2.1, we need only show that the set

$$\Sigma := \{ y \in X : \sup_{x \in S(y) \setminus T(y)} \inf_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x) > 0 \}$$

is open in X. Indeed, let $y_0 \in \Sigma$; then there exists $x_0 \in S(y_0)$ such that $\alpha := \inf_{w \in T(y_0)} \Re \langle w, y_0 - x_0 \rangle + h(y_0) - h(x_0) > 0$.

Let $W := \{ w \in E^* : \sup_{z_1, z_2 \in X} |\langle w, z_1 - z_2 \rangle| < \frac{\alpha}{2} \}$. Then W is a strongly open neighborhood of 0 in E^* so that $U_1 := T(y_0) + W$ is an open neighborhood of $T(y_0)$ in E^*. Since T is upper semicontinuous at y_0 in X, there exists an open neighborhood N_1 of y_0 in X such that $T(y_0) \subset U_1$ for all $y \in N_1$.

Now, the rest of the proof is similar to the proof of Theorem 2.2 in [6]. Hence by the rest of the proof of Theorem 2.2 in [6], Σ is open in X. This proves the theorem.

\[\square\]

If X is compact, we obtain the following immediate consequence of Theorem 2.3:

Theorem 2.4. Let E be a locally convex Hausdorff topological vector space, X be a non-empty compact convex subset of E and $h : E \to \mathbb{R}$ be convex. Let $S : X \to 2^X$ be continuous such that each $S(x)$ is closed convex and $T : X \to 2^{E^*}$ be strongly h-pseudo-monotone and be upper semicontinuous from $co(A)$ to the weak*-topology on E^* for each $A \in \mathcal{F}(X)$ such that each $T(x)$ is weak*-compact convex. Suppose that for each $y \in \Sigma = \{ y \in X : \sup_{x \in S(y) \setminus T(y)} \inf_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x) > 0 \}$, T is upper semicontinuous at y from the relative topology on X to the strong topology on E^*. Then there exists $\hat{y} \in X$ such that (i) $\hat{y} \in S(\hat{y})$ and (ii) there exists $\hat{w} \in T(\hat{y})$ with $\Re \langle \hat{w}, \hat{y} - x \rangle \leq h(x) - h(\hat{y})$ for all $x \in S(\hat{y})$.

We remark here that in Theorems 2.1-2.4, the condition “$h : E \to \mathbb{R}$ be convex” can be replaced by the condition “$h : X \to \mathbb{R}$ be convex such that $h|_{co(A)}$ is continuous for each $A \in \mathcal{F}(X)$”.

3. Generalized quasi-variational inequalities for pseudo-monotone operators

In this section we shall obtain some existence theorems of generalized quasi-variational inequalities for pseudo-monotone operators (Definition 1.1) on paracompact convex sets.
We shall first establish the following result:

Theorem 3.1. Let E be a locally convex Hausdorff topological vector space, X be a non-empty paracompact convex and bounded subset of E and $h : E \to \mathbb{R}$ be convex such that $h(X)$ is bounded. Let $S : X \to 2^X$ be upper semicontinuous such that each $S(x)$ is compact convex and $T : X \to 2^{E^*}$ be h-pseudo-monotone and be upper semicontinuous from $co(A)$ to the weak*-topology on E^* for each $A \in \mathcal{F}(X)$ such that each $T(x)$ is weak*-compact convex and $T(X)$ is strongly bounded. Suppose that the set $\Sigma = \{ y \in X : \sup_{x \in S(y)} [\inf_{w \in T(y)} Re \langle w, y - x \rangle + h(y) - h(x)] > 0 \}$ is open in X. Suppose further that there exist a non-empty compact subset K of X and a point $x_0 \in X$ such that $x_0 \in K \cap S(y)$ and $\inf_{w \in T(y)} Re \langle w, y - x_0 \rangle + h(y) - h(x_0) > 0$ for all $y \in X \setminus K$. Then there exists $\bar{y} \in K$ such that (i) $\bar{y} \in S(\bar{y})$ and (ii) there exists $\hat{w} \in T(\bar{y})$ with $Re \langle \hat{w}, \bar{y} - x \rangle \leq h(x) - h(\bar{y})$ for all $x \in S(\bar{y})$.

Proof. We divide the proof into two steps:

Step 1. There exists a point $\hat{y} \in X$ such that $\hat{y} \in S(\bar{y})$ and

$$\sup_{x \in S(\bar{y})} \left[\inf_{w \in T(\bar{y})} Re \langle w, \hat{y} - x \rangle + h(\hat{y}) - h(x) \right] \leq 0.$$

Suppose the contrary. Then for each $y \in X$, either $y \not\in S(y)$ or there exists $x \in S(y)$ such that $\inf_{w \in T(y)} Re \langle w, y - x \rangle + h(y) - h(x) > 0$; that is, $y \not\in S(y)$ or $y \not\in \Sigma$. If $y \not\in S(y)$, then by Hahn-Banach separation theorem, there exists $p \in E^*$ such that $Re \langle p, y \rangle - \sup_{x \in S(y)} Re \langle p, x \rangle > 0$. For each $y \in X$, set $\gamma(y) := \sup_{x \in S(y)} [\inf_{w \in T(y)} Re \langle w, y - x \rangle + h(y) - h(x)]$. Let $V_0 := \{ y \in X : \gamma(y) > 0 \} = \Sigma$ and for each $p \in E^*$, set $V_p := \{ y \in X : Re \langle p, y \rangle - \sup_{x \in S(y)} Re \langle p, x \rangle > 0 \}$.

Then $X = V_0 \cup \bigcup_{p \in E^*} V_p$. Since each V_p is open in X by Lemma 1 in [11] and V_0 is open in X by hypothesis, $\{V_0, V_p : p \in E^* \}$ is an open covering for X. Since X is paracompact, there is a continuous partition of unity $\{\beta_0, \beta_p : p \in E^* \}$ for X subordinated to the open cover $\{V_0, V_p : p \in E^* \}$. Note that for each $A \in \mathcal{F}(X)$, h is continuous on $co(A)$ (see e.g. [10, Corollary 10.1.1, p.83]). Define $\phi : X \times X \to \mathbb{R}$ by

$$\phi(x, y) = \beta_0(y) \left[\min_{w \in T(y)} Re \langle w, y - x \rangle + h(y) - h(x) \right] + \sum_{p \in E^*} \beta_p(y) Re \langle p, y - x \rangle$$

for each $x, y \in X$. Then we have the following.

1. The same argument in proving (1) in the proof of Theorem 2.1 shows that for each $A \in \mathcal{F}(X)$ and each fixed $x \in co(A)$, the map $y \mapsto \phi(x, y)$ is lower semicontinuous on $co(A)$.

2. The same argument in proving (2) in the proof of Theorem 2.1 shows that for each $A \in \mathcal{F}(X)$ and for each $y \in co(A)$, $\min_{x \in A} \phi(x, y) \leq 0$.

3. Suppose $A \in \mathcal{F}(X)$, $x, y \in co(A)$ and $\{y_\alpha\}_{\alpha \in \Gamma}$ is a net in X converging to y with $\phi(tx + (1 - t)y, y_\alpha) \leq 0$ for all $\alpha \in \Gamma$ and all $t \in [0, 1]$.

Case 1. $\beta_0(y) = 0$.

Note that $\beta_0(y_\alpha) \geq 0$ for each $\alpha \in \Gamma$ and $\beta_0(y_\alpha) \to 0$. Since $T(X)$ is strongly bounded and $\{y_\alpha\}_{\alpha \in \Gamma}$ is a bounded net, it follows that

$$\limsup_{\alpha} [\beta_0(y_\alpha) \left(\min_{w \in T(y_\alpha)} Re \langle w, y_\alpha - x \rangle + h(y_\alpha) - h(x) \right)] = 0.$$
Also \(\beta_0(y) [\min_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x)] = 0 \). Thus

\[
(3.2) \quad \limsup_{\alpha} [\beta_0(y_a)(\min_{w \in T(y_a)} \Re \langle w, y_a - x \rangle + h(y_a) - h(x))] + \sum_{p \in E^*} \beta_p(y) Re \langle p, y - x \rangle
\]

\[
= \sum_{p \in E^*} \beta_p(y) Re \langle p, y - x \rangle \quad \text{(by (3.1))}
\]

\[
= \beta_0(y)[\min_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x)] + \sum_{p \in E^*} \beta_p(y) Re \langle p, y - x \rangle.
\]

For \(t = 1 \) we have \(\phi(x, y_a) \leq 0 \) for all \(\alpha \in \Gamma \), i.e.,

\[
(3.3) \quad \beta_0(y_a)[\min_{w \in T(y_a)} \Re \langle w, y_a - x \rangle + h(y_a) - h(x)] + \sum_{p \in E^*} \beta_p(y_a) Re \langle p, y_a - x \rangle \leq 0
\]

for all \(\alpha \in \Gamma \). Therefore

\[
\limsup_{\alpha} [\beta_0(y_a)(\min_{w \in T(y_a)} \Re \langle w, y_a - x \rangle + h(y_a) - h(x))] + \liminf_{\alpha} [\sum_{p \in E^*} \beta_p(y_a) Re \langle p, y_a - x \rangle]
\]

\[
\leq \limsup_{\alpha} [\beta_0(y_a)(\min_{w \in T(y_a)} \Re \langle w, y_a - x \rangle + h(y_a) - h(x))]
\]

\[
+ \sum_{p \in E^*} \beta_p(y_a) Re \langle p, y_a - x \rangle
\]

\[
\leq 0 \quad \text{(by (3.3)).}
\]

Thus

\[
(3.4) \quad \limsup_{\alpha} [\beta_0(y_a)(\min_{w \in T(y_a)} \Re \langle w, y_a - x \rangle + h(y_a) - h(x))] + \sum_{p \in E^*} \beta_p(y) Re \langle p, y - x \rangle \leq 0.
\]

Hence by (3.2) and (3.4), we have \(\phi(x, y) \leq 0 \).

Case 2. \(\beta_0(y) > 0 \).

Since \(\beta_0(y_a) \rightarrow \beta_0(y) \), there exists \(\lambda \in \Gamma \) such that \(\beta_0(y_a) > 0 \) for all \(\alpha \geq \lambda \).

Then for \(t = 0 \) we have \(\phi(y, y_a) \leq 0 \) for all \(\alpha \in \Gamma \), i.e.,

\[
\beta_0(y_a)[\min_{w \in T(y_a)} \Re \langle w, y_a - y \rangle + h(y_a) - h(y)] + \sum_{p \in E^*} \beta_p(y_a) Re \langle p, y_a - y \rangle \leq 0
\]

for all \(\alpha \in \Gamma \). Thus

\[
(3.5) \quad \limsup_{\alpha} [\beta_0(y_a)(\min_{w \in T(y_a)} \Re \langle w, y_a - y \rangle + h(y_a) - h(y))] + \sum_{p \in E^*} \beta_p(y_a) Re \langle p, y_a - y \rangle] \leq 0.
\]
Since \(\beta \geq 0 \), \(\beta_0(y_\alpha) \) is \(h \)-pseudo-monotone, we have
\[
\sum_{p \in E^*} \beta_p(y_\alpha) \Re \langle p, y_\alpha - y \rangle = 0 \quad \text{by (3.5)}.
\]

Since \(\liminf_{\alpha} [\sum_{p \in E^*} \beta_p(y_\alpha) \Re \langle p, y_\alpha - y \rangle] = 0 \), we have
\[
\limsup_{\alpha} [\beta_0(y_\alpha) \Re \langle w, y_\alpha - y \rangle] = 0.
\]

Since \(\beta_0(y_\alpha) > 0 \) for all \(\alpha \geq \lambda \), it follows that
\[
\beta_0(y) \limsup_{\alpha} \left[\min_{w \in T(y_\alpha)} \Re \langle w, y_\alpha - y \rangle + h(y_\alpha) - h(y) \right] = \limsup_{\alpha} [\beta_0(y_\alpha) \Re \langle w, y_\alpha - y \rangle + h(y_\alpha) - h(y)] \geq 0.
\]

Since \(\beta_0(y) > 0 \), by (3.6) and (3.7) we have
\[
\limsup_{\alpha} \left[\min_{w \in T(y_\alpha)} \Re \langle w, y_\alpha - y \rangle + h(y_\alpha) - h(y) \right] = 0.
\]

Since \(T \) is \(h \)-pseudo-monotone, we have
\[
\liminf_{\alpha} \left[\min_{w \in T(y_\alpha)} \Re \langle w, y_\alpha - x \rangle + h(y_\alpha) - h(x) \right] \geq \min_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x).
\]

Since \(\beta_0(y) > 0 \), we have
\[
\beta_0(y) \left[\liminf_{\alpha} \left[\min_{w \in T(y_\alpha)} \Re \langle w, y_\alpha - x \rangle + h(y_\alpha) - h(x) \right] \right] \geq \beta_0(y) \left[\min_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x) \right].
\]

Thus
\[
\beta_0(y) \left[\liminf_{\alpha} \left[\min_{w \in T(y_\alpha)} \Re \langle w, y_\alpha - x \rangle + h(y_\alpha) - h(x) \right] \right] + \sum_{p \in E^*} \beta_p(y) \Re \langle p, y - x \rangle \geq \beta_0(y) \left[\min_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x) \right] + \sum_{p \in E^*} \beta_p(y) \Re \langle p, y - x \rangle.
\]

For \(t = 1 \) we also have \(\phi(x, y_\alpha) \leq 0 \) for all \(\alpha \in \Gamma \), i.e.,
\[
\beta_0(y_\alpha) \left[\min_{w \in T(y_\alpha)} \Re \langle w, y_\alpha - x \rangle + h(y_\alpha) - h(x) \right] + \sum_{p \in E^*} \beta_p(y_\alpha) \Re \langle p, y_\alpha - x \rangle \leq 0
\]
for all \(\alpha \in \Gamma \). Therefore
\[
0 \geq \liminf_{\alpha} \left[\beta_0(y_\alpha) \left(\min_{w \in T(y_\alpha)} \Re \langle w, y_\alpha - x \rangle + h(y_\alpha) - h(x) \right) \right.
\quad + \sum_{p \in E^*} \beta_p(y_\alpha) \Re \langle p, y_\alpha - x \rangle \bigg] \\
\geq \liminf_{\alpha} \left[\beta_0(y_\alpha) \left(\min_{w \in T(y_\alpha)} \Re \langle w, y_\alpha - x \rangle + h(y_\alpha) - h(x) \right) \right.
\quad + \liminf_{\alpha} \left[\sum_{p \in E^*} \beta_p(y_\alpha) \Re \langle p, y_\alpha - x \rangle \bigg] \\
= \beta_0(y) \liminf_{\alpha} \left[\min_{w \in T(y_\alpha)} \Re \langle w, y_\alpha - x \rangle + h(y_\alpha) - h(x) \right] \\
\quad + \sum_{p \in E^*} \beta_p(y) \Re \langle p, y - x \rangle.
\]
(3.9)

Consequently, by (3.8) and (3.9), we have \(\phi(x, y) \leq 0 \).

Now, the rest of the proof of Step 1 is similar to the proofs in Step 1 of Theorem 2.1 and Theorem 3.1 in [6]. Thus Step 1 is proved.

Step 2. There exists a point \(\hat{w} \in T(\hat{y}) \) such that \(\Re \langle \hat{w}, \hat{y} - x \rangle + h(\hat{y}) - h(x) \leq 0 \) for all \(x \in S(\hat{y}) \).

Also the same proof of Step 2 of Theorem 2.1 shows that there exists \(\hat{w} \in T(\hat{y}) \) such that \(\Re \langle \hat{w}, \hat{y} - x \rangle + h(\hat{y}) - h(x) \leq 0 \) for all \(x \in S(\hat{y}) \).

If \(X \) is compact, we obtain the following immediate consequence of Theorem 3.1:

Theorem 3.2. Let \(E \) be a locally convex Hausdorff topological vector space, \(X \) be a non-empty compact convex subset of \(E \) and \(h : E \to \mathbb{R} \) be convex such that \(h(X) \) is bounded. Let \(S : X \to 2^X \) be upper semicontinuous such that each \(S(x) \) is closed convex and \(T : X \to 2^{E^*} \) be h-pseudo-monotone and be upper semicontinuous from \(\text{co}(A) \) to the weak*-topology on \(E^* \) for each \(A \in \mathcal{F}(X) \) such that each \(T(x) \) is weak*-compact convex and \(T(X) \) is strongly bounded. Suppose that the set \(\Sigma = \{ y \in X : \sup_{x \in S(y)} \left[\inf_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x) \right] > 0 \} \) is open in \(X \). Then there exists \(\hat{y} \in X \) such that (i) \(\hat{y} \in S(\hat{y}) \) and (ii) there exists \(\hat{w} \in T(\hat{y}) \) with \(\Re \langle \hat{w}, \hat{y} - x \rangle \leq h(x) - h(\hat{y}) \) for all \(x \in S(\hat{y}) \).

Note that if the map \(S : X \to 2^X \) is, in addition, lower semicontinuous and for each \(y \in \Sigma \), \(T \) is upper semicontinuous at \(y \) in \(X \), then the set \(\Sigma \) in Theorem 3.1 is always open in \(X \) as can be seen in the proof of the following:

Theorem 3.3. Let \(E \) be a locally convex Hausdorff topological vector space, \(X \) be a non-empty paracompact convex and bounded subset of \(E \) and \(h : E \to \mathbb{R} \) be convex such that \(h(X) \) is bounded. Let \(S : X \to 2^X \) be continuous such that each \(S(x) \) is compact convex and \(T : X \to 2^{E^*} \) be h-pseudo-monotone and be upper semicontinuous from \(\text{co}(A) \) to the weak*-topology on \(E^* \) for each \(A \in \mathcal{F}(X) \) such that each \(T(x) \) is weak*-compact convex and \(T(X) \) is strongly bounded. Suppose that for each \(y \in \Sigma = \{ y \in X : \sup_{x \in S(y)} \left[\inf_{w \in T(y)} \Re \langle w, y - x \rangle + h(y) - h(x) \right] > 0 \} \), \(T \) is upper semicontinuous at \(y \) from the relative topology on \(X \) to the strong topology on \(E^* \). Suppose further that there exist a non-empty compact subset \(K \) of \(X \) and a point \(x_0 \in X \) such that \(x_0 \in K \cap S(y) \) and \(\inf_{w \in T(y)} \Re \langle w, y - x_0 \rangle + h(y) - h(x_0) > 0 \) for all \(y \in X \setminus K \). Then there exists \(\hat{y} \in K \) such that (i) \(\hat{y} \in S(\hat{y}) \) and (ii) there exists \(\hat{w} \in T(\hat{y}) \) with \(\Re \langle \hat{w}, \hat{y} - x \rangle \leq h(x) - h(\hat{y}) \) for all \(x \in S(\hat{y}) \).
Proof. By virtue of Theorem 3.1, we need only show that the set \(\Sigma := \{ y \in X : \sup_{x \in S(y)} \left[\inf_{w \in T(y)} R \langle w, y - x \rangle + h(y) - h(x) \right] > 0 \} \) is open in \(X \).

Now, following the same arguments as in the proofs of Theorems 3.2 in [6] and Theorem 2.3, we can similarly show that the set \(\Sigma \) is open in \(X \). Hence by Theorem 3.1 the conclusion follows.

If \(X \) is compact, we obtain the following immediate consequence of Theorem 3.3:

Theorem 3.4. Let \(E \) be a locally convex Hausdorff topological vector space, \(X \) be a non-empty compact convex subset of \(E \) and \(h : E \to \mathbb{R} \) be convex such that \(h(X) \) is bounded. Let \(S : X \to 2^X \) be continuous such that each \(S(x) \) is closed convex and \(T : X \to 2^{E^*} \) be \(h \)-pseudo-monotone and be upper semicontinuous from \(\text{co}(A) \) to the weak* topology on \(E^* \) for each \(A \in F(X) \) such that each \(T(x) \) is weak*-compact convex and \(T(X) \) is strongly bounded. Suppose that for each \(y \in \Sigma = \{ y \in X : \sup_{x \in S(y)} \left[\inf_{w \in T(y)} R \langle w, y - x \rangle + h(y) - h(x) \right] > 0 \} \), \(T \) is upper semicontinuous at \(y \) from the relative topology on \(X \) to the strong topology on \(E^* \). Then there exists \(\tilde{y} \in X \) such that (i) \(\tilde{y} \in S(\tilde{y}) \) and (ii) there exists \(\tilde{w} \in T(\tilde{y}) \) with \(R \langle \tilde{w}, \tilde{y} - x \rangle \leq h(x) - h(\tilde{y}) \) for all \(x \in S(\tilde{y}) \).

We remark here that in Theorems 3.1-3.4, the condition “\(h : E \to \mathbb{R} \) be convex” can be replaced by the condition “\(h : X \to \mathbb{R} \) be convex such that \(h|_{\text{co}(A)} \) is continuous for each \(A \in F(X) \)”.

References

Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

E-mail address: mohammad@mscs.dal.ca

E-mail address: kktan@mscs.dal.ca