ON THE IRRATIONALITY OF A CERTAIN q SERIES

PETER B. BORWEIN AND PING ZHOU

(Communicated by David E. Rohrlich)

Abstract. We prove that if q is an integer greater than one, r and s are any positive rationals such that $1 + q^m r - q^{2m} s \neq 0$ for all integers $m \geq 0$, then
\[\sum_{j=0}^{\infty} \frac{1}{1 + q^j r - q^{2j} s} \]
is irrational and is not a Liouville number.

1. Introduction and results

For q a positive integer greater than one and r a non-zero rational ($r \neq -q^m$ for all integers $m \geq 0$), the irrationality of the series
\[\sum_{n=1}^{\infty} \frac{1}{q^n + r} \]
was proved by Borwein [3] in 1991. This generalized the result of the irrationality of the series
\[\sum_{n=1}^{\infty} \frac{1}{2^n - 1} = \sum_{n=1}^{\infty} \frac{d(n)}{2^n}, \]
where $d(n)$ is the divisor function, which was proved by Erdős [5] in 1948. It also resolves the conjecture of Erdős and Graham [6] in 1980, of the irrationality of
\[\sum_{n=1}^{\infty} \frac{1}{2^n - 3}. \]

The technique employed in [3] to prove the above result is to examine the Padé approximants to an appropriate function, and to show, with some modification, that they provide a rational approximation that is too rapid to be consistent with rationality. This is a general approach that has been explored to prove irrationality by Mahler [8], Chudnovsky and Chudnovsky [4], and Walliser [9]. But it is not often the case that one can explicitly construct or completely analyze the Padé approximants or rational approximants that are required. The situation becomes more complicated when we deal with two variable functions. By using a similar
but more technical method, the second author generalized in [10] the irrationality
of the infinite product
\[\prod_{n=1}^{\infty} \left(1 + \frac{\alpha}{q^n}\right), \]
to the two variable case
\[\prod_{j=0}^{\infty} \left(1 + q^{-j}r + q^{-2j}s\right), \]
where \(q \) is an integer greater than one, and \(r, s \) are any positive rationals. In this
paper, we use this general approach to generalize the previously mentioned results
of [3] to the two variable case:

Theorem 1.1. If \(q \) is an integer greater than one, \(r \) and \(s \) are any positive rationals
such that \(1 + q^m r - q^{2m} s \neq 0 \) for all integers \(m \geq 0 \), then
\[\sum_{j=0}^{\infty} \frac{1}{1 + q^j r - q^{2j} s} \]
is irrational.

We need here the standard \(q \)-analogues of factorials and binomial coefficients.
The \(q \)-factorial is
\[[n]_q! := [n]! := \frac{(1-q^n)(1-q^{n-1}) \cdots (1-q)}{(1-q)^n}, \tag{1.1} \]
where \([0]_q! := 1\). The \(q \)-binomial coefficient is
\[\binom{n}{k}_q := \frac{[n]!}{[k]! [n-k]!}. \tag{1.2} \]
We note that
\[\prod_{\substack{k=0 \atop k \neq 0}}^{n} (q^k - q^h) = (-1)^k q^{k(2n-k-1)/2} [n-k]! [k]! (1-q)^n, \tag{1.3} \]
and (see Gasper and Rahman [7]) for \(|t| < 1 \),
\[\prod_{k=0}^{n} (t - q^k) = (-1)^{n+1} q^{-n(n+1)/2} \sum_{l=0}^{\infty} \left[\frac{n+l}{l} \right] q^{-nl} t^l, \tag{1.4} \]
and (the Cauchy binomial theorem)
\[\sum_{k=0}^{n} \binom{n}{k} q^{(k+1)/2} x^k = \prod_{k=1}^{n} (1 + q^{k} x). \tag{1.5} \]
We prove some properties of approximants to the function
\[F(x, y) = \sum_{j=0}^{\infty} \frac{1}{1 + q^j x - q^{2j} xy}, \quad |q| > 1, \]
in section 2, and use those properties to prove Theorem 1.1 in section 3.
2. Some results on a relevant function

Let $|q| > 1$,

(2.1) \[F(x, y) := \sum_{j=0}^{\infty} \frac{1}{1 + q^j x - q^{2j} xy}, \]

and

(2.2) \[F_n(x, y) := \sum_{j=n+1}^{\infty} \frac{1}{1 + q^j x - q^{2j} xy}. \]

Then for $k \geq 0$ integer,

(2.3) \[F(q^k x, q^k y) = \sum_{j=0}^{\infty} \frac{1}{1 + q^{j+k} x - q^{2j+2k} xy} = F(x, y) - \sum_{j=0}^{k-1} \frac{1}{1 + q^j x - q^{2j} xy}, \]

and for $0 \leq k \leq n$ integer,

(2.4) \[F_n(q^{-k} x, q^{-k} y) = \sum_{j=n+1}^{\infty} \frac{1}{1 + q^{-j} x - q^{2j-2k} xy} = F(x, y) - S_{n-k}(x, y), \]

where

(2.5) \[S_k(x, y) := \sum_{j=0}^{k-1} \frac{1}{1 + q^j x - q^{2j} xy}. \]

From (2.3) we can see that for rationals q, x and y, the irrationality of $F(q^k x, q^k y)$ is equivalent to the irrationality of $F(x, y)$. So we assume $|x|, |y| > 2$ throughout this paper, as we can replace x and y by $q^m x$ and $q^m y$ respectively for some integers $m \geq 1$. Now let

(2.6) \[z_1 := -x + \sqrt{x^2 + 4xy} \quad \text{and} \quad z_2 := -x - \sqrt{x^2 + 4xy}. \]

Then

(2.7) \[\min\{|z_1|, |z_2|\} > 1, \]

as we assume $|x|, |y| > 2$.

Theorem 2.1. Let $F(x, y), F_n(x, y)$ be defined by (2.1) and (2.2) respectively, $n \geq 2$ be an even integer, and

(2.8) \[I(x, y) := \frac{1}{2\pi i} \int_{|t|=\infty/2+1} \frac{F_n(x/t, y/t)}{(\prod_{k=0}^{n/2}(t - q^k))^n/2+1} dt. \]
Let
\[
Q(q) := \frac{1}{(1-q)^{n/2} \left[\frac{n}{2} \right]!} \sum_{k=0}^{n/2} (-1)^k \left[\frac{n}{2} \right]_k q^{k(k-1)/2-nk},
\]
and
\[
P(x, y) := \frac{1}{(1-q)^{n/2} \left[\frac{n}{2} \right]!} \sum_{k=0}^{n/2} (-1)^k \left[\frac{n}{2} \right]_k q^{k(k-1)/2-nk} S_{n/2-k+1}(x, y)
\]
\[
+ \frac{1}{(n/2)!} \frac{d^{n/2}}{dt^{n/2}} \left\{ \frac{F(x/t, y/t)}{\prod_{k=0}^{n-1} (t-q^k)} \right\}_{t=0}.
\]
the circle \(\{ t : |t| = q^{n/2+1} \} \). By the residue theorem and the functional equation (2.4), and (1.3), we have

\[
I(x, y) = \frac{1}{2\pi i} \int_{|t|=q^{n/2+1}} \frac{F_{n/2}(x/t, y/t) dt}{(\prod_{k=0}^{n/2} (t - q^k)) t^{n/2+1}}
\]

\[
= \sum_{k=0}^{n/2} \frac{F_{n/2}(q^k x, q^k y)}{(\prod_{h \neq k}^{n/2} (q^k - q^h)) q^{k(n/2+1)}} + \frac{1}{(n/2)!} \frac{d^{n/2}}{dt^{n/2}} \left\{ \frac{F_{n/2}(x/t, y/t)}{\prod_{k=0}^{n/2} (t - q^k)} \right\}_{t=0}
\]

\[
= \frac{1}{(1-q)^{n/2}[n/2]!} \sum_{k=0}^{n/2} (-1)^k \left[\frac{n/2}{k} \right] q^{k(k-1)/2-nk} (F(x, y) - S_{n/2-k+1}(x, y))
\]

\[+ \frac{1}{(n/2)!} \frac{d^{n/2}}{dt^{n/2}} \left\{ \frac{F_{n/2}(x/t, y/t)}{\prod_{k=0}^{n/2} (t - q^k)} \right\}_{t=0}
\]

\[= Q(q)F(x, y) + P(x, y). \]

Proof of (ii). As \(\left[\frac{n/2}{k} \right] \) is a polynomial in \(q \) with integer coefficients, and the lowest power of \(q \) in \(\sum_{k=0}^{n/2} (-1)^k \left[\frac{n/2}{k} \right] q^{k(k-1)/2-nk} \) is when \(k = n/2, -n(3n+2)/8, (2.12) \) holds.

Proof of (iii). For \(|t| \leq q^{n/2+1} \),

\[
F_{n/2}(x/t, y/t) = \sum_{j=n/2+1}^{\infty} t^2 + q^j xt - q^{2j} xy
\]

\[= \sum_{j=n/2+1}^{\infty} \frac{-t^2}{q^{2j} xy (1 - (t^2 + q^j xt)/(q^{2j} xy))}
\]

\[= \sum_{j=n/2+1}^{\infty} \frac{-t^2}{q^{2j} xy} \sum_{i=0}^{\infty} \left(\frac{2t + q^j xt}{q^{2j} xy} \right)^i
\]

\[= - \sum_{j=n/2+1}^{\infty} \sum_{i=0}^{\infty} \frac{t^{i+2} (q^j x)^i}{(q^{2j} xy)^{i+1}} (1 + \frac{t}{q^{j} x})^i
\]

\[= - \sum_{j=n/2+1}^{\infty} \sum_{i=0}^{\infty} \frac{t^{i+2} (q^j x)^i}{q^{j(i+2)} xy^{i+1}} \sum_{k=0}^{i} \left(\frac{i}{k} \right) \left(\frac{t}{q^{j} x} \right)^k
\]

\[= - \sum_{j=n/2+1}^{\infty} \sum_{i=0}^{\infty} \sum_{k=0}^{i} \left(\frac{i}{k} \right) \frac{t^{i+k+2}}{q^{j(i+k+2)} x^{k+1} y^{i+1}}
\]

\[= - \sum_{i=0}^{\infty} \sum_{k=0}^{i} \left(\frac{i}{k} \right) t^{i+k+2} q^{-n(i+k+2)/2} x^{k+1} y^{i+1} q^{i+k+2} - 1
\]

and from (1.4),

\[\prod_{k=0}^{n/2} (t - q^k) = (-1)^{n/2+1} q^{-n(n+2)/8} \sum_{h=0}^{\infty} \left[\frac{n/2 + h}{h} \right] q^{-hn/2} x^h. \]
Combining (2.17) and (2.18), we have

\[
\frac{F_{n/2}(x/t, y/t)}{\prod_{k=0}^{n/2} (t - q^k)} = (-1)^{n/2} q^{-n(n+2)/8} \sum_{i, h = 0}^{\infty} \sum_{k = 0}^{i} \left[\begin{array}{c} n/2 + h \\ h \end{array} \right] \binom{i}{k} \frac{t^{h+i+k+2} q^{-n(h+i+k+2)/2}}{x^{k+1} y^{i+1} q^{i+k+2} - 1},
\]

and then

\[
D(x, y) := \frac{1}{(n/2)!} \frac{d^{n/2}}{dt^{n/2}} \left\{ F_{n/2}(x/t, y/t) \right\}_{t=0} = (-1)^{n/2} q^{-n(n+2)/8} \sum_{h+i+k+2 = n/2}^{h, i, k \leq n/2 - 2} \left[\begin{array}{c} n/2 + h \\ h \end{array} \right] \frac{1}{x^{k+1} y^{i+1} q^{i+k+2} - 1},
\]

So

\[
q^{(3n+2)/8} (xy)^{n/2} \left(\prod_{j=1}^{n/2} (q^j - 1) \right) D(x, y) \in \mathbb{Z}[q, x, y].
\]

So (2.14) follows from (2.10), (2.12) and (2.21).

Proof of (iv). For \(R := q^{n/2 + 1} \),

\[
|I(x, y)| \leq \frac{\max_{|t| = R} |F_{n/2}(x/t, y/t)|}{R^{n/2} \prod_{k=0}^{n/2} (R - q^k)}.
\]

Now from (2.17), we have

\[
\max_{|t| = R} |F_{n/2}(x/t, y/t)| = \max_{|t| = R} \left| \sum_{j=n/2+1}^{\infty} \sum_{i=0}^{\infty} \sum_{k=0}^{i} \binom{i}{k} q^{(n/2+1)(i+k+2)} x^{k+1} y^{i+1} \right|
\]

\[
\leq \sum_{j=n/2+1}^{\infty} \sum_{i=0}^{\infty} \sum_{k=0}^{i} \binom{i}{k} q^{(n/2+1)(i+k+2)} x^{k+1} y^{i+1}
\]

\[
= \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{k=0}^{i} \binom{i}{k} q^{j(i+k+2)} x^{k+1} y^{i+1}
\]

\[
\leq \sum_{j=0}^{\infty} \frac{1}{q^j}
\]

\[
(2.23)
\]

\[
\leq 2.
\]
Now
\[
R^{n/2} \prod_{k=0}^{n/2} (R - q^k) = R^{n+1} \prod_{k=0}^{n/2} (1 - q^{-n/2-k-1}) \\
\geq R^{2n+1} \prod_{j=0}^{\infty} (1 - q^{-j})
\]
(2.24)
\[
\geq c q^{n(2n+1)/2},
\]
where \(c := \prod_{j=0}^{\infty} (1 - q^{-j})\). Putting (2.23) and (2.24) into (2.22), we have
\[
|I(x,y)| \leq c q^{n(2n+1)/2},
\]
where \(c_q := 2/c\) is depending only on \(q\).

3. Proof of Theorem 1.1

We first prove that for \(x, y > 0\),
(3.1) \(|I(x,y)| > 0\),
where \(I(x,y)\) is defined by (2.8). In fact, from (2.17),
\[
I(x,y) = \frac{1}{2\pi i} \int_{|t|=q^{n/2+1}} \frac{F_{n/2}(x/t, y/t)}{t^{n+2} \left(\prod_{k=0}^{n/2} (1 - q^k/t) \right)} dt
\]
\[
= \sum_{j_0, \ldots, j_{n/2} \geq 0} q^{-k_0 \cdot k_{j_0}} \cdot \frac{1}{2\pi i} \int_{|t|=q^{n/2+1}} \left\{ -1 \right\}^{t^{n+2} + (j_0 + \ldots + j_{n/2})} \sum_{i=0}^{\infty} \binom{i}{k} \frac{x^{i+k+2}}{x^{k+1}y^{i+1}} q^{-n(i+k+2)/2} dt
\]
\[
= - \sum_{j_0, \ldots, j_{n} \geq 0} q^{-k_0 \cdot j_{j_0}} \sum_{i+k+(n+j_0 + \ldots + j_{n}) = -1} \binom{i}{k} \frac{1}{x^{k+1}y^{i+1}} q^{-n(i+k+2)/2} dt
\]
\[
\neq 0,
\]
as all \(x, y, q > 1\). So (3.1) holds. Now let \(r, s\) be any fixed positive rational numbers, then \(u := s/r\) is also a positive rational number such that
(3.2) \(F(r,u) = \sum_{j=0}^{\infty} \frac{1}{1 + q^{-j}r - q^{-2j}ru}\).

Again we can assume \(r, u > 2\) because of (2.3). Now let \(Q(q), P(x,y)\) and \(R_{n/2}(x,y)\) be defined in (2.9), (2.10), (2.13) respectively, and
(3.3) \(H_n(q) := q^{n(n+2)/2} \prod_{j=1}^{n/2} (q^j - 1)\).
then
\[0 < |H_n(q)| \leq h_q q^{n(n+1)/2},\]
where \(h_q := \prod_{j=0}^{\infty} (1 - q^{-j})\), and
\[x^{n/2} y^{n/2} H_n(q) R_{n/2}(x, y) \cdot \{Q(q), P(x, y)\} \subset \mathbb{Z}[q, x, y].\]

Now let
\[Q^*(r, u) := r^{n/2} u^{n/2} H_n(q) R_{n/2}(r, u) Q(q),\]
and
\[P^*(r, u) := r^{n/2} u^{n/2} H_n(q) R_{n/2}(r, u) P(r, u).\]
Then
\[Q^*(r, u), P^*(r, u) \in \mathbb{Z}[q, r, u],\]
and
\[(3.9) \quad \Delta := |Q^*(r, u) F(r, u) + P^*(r, u)| \leq (ru) \frac{n/2 |H_n(q)| |R_{n/2}(r, u)| |I(r, u)|}{\left(\prod_{j=0}^{\infty} (1 + q^{-j} + q^{-2j})\right)^{1/2}}.
\]

Now \(\Delta > 0\) and by (2.15),
\[(3.10) \quad \Delta \leq (ru)^{n+1} |H_n(q)| q^{n(n+1)/2} \left(\prod_{j=0}^{n/2} (1 + q^{-j} + q^{-2j})\right)^{1/2} I(r, u)|
\leq h_q f_q (ru)^{n+1} q^{n(n+1)/2} q^{n(n+1)/4} c_q \frac{c_q}{q^{n(2n+1)/2}}
\]
where \(f_q := \prod_{j=0}^{\infty} (1 + q^{-j} + q^{-2j})\) is a constant depending only on \(q\). Finally, if
\[(3.11) \quad r := \frac{i}{l} \quad \text{and} \quad u := \frac{j}{m}\]
with \(i, j, l, m\) positive integers, then
\[Q^{**}(r, u) := (lm)^n Q^*(r, u),\]
and
\[P^{**}(r, u) := (lm)^n P^*(r, u),\]
are integers, and by (3.10),
\[0 < |Q^{**}(r, u) F(r, u) + P^{**}(r, u)| \leq (lm)^n |Q^*(r, u) F(r, u) + P^*(r, u)| \leq (lm)^n h_q f_q (ru)^{n+1} \frac{c_q}{q^{n(2n+1)/2}},\]
which tends to zero as \(n \to \infty\). This shows that \(F(r, u)\) is irrational, that is
\[\frac{1}{\sum_{j=0}^{\infty} \frac{1}{1 + q^j r - q^{2j}s}}\]
is irrational for \(q > 1\) integers and \(r, s\) positive rationals. This completes the proof of Theorem 1.1. □
Now by the standard methods (as in chapter 11 of Borwein and Borwein [1]),
the estimates in the proof of Theorem 1.1 give that, under the assumption of the
theorem,
\[|F(r, u) - \frac{s}{t}| > \frac{1}{t^\alpha}, \]
for some constant \(\alpha\) and all integers \(s\) and \(t\), and hence
\[\sum_{j=0}^{\infty} \frac{1}{1 + q^jr - q^{2j}s} \]
is not a Liouville number.

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, SIMON FRASER UNIVERSITY, BURNABY, BRITISH COLUMBIA, CANADA V5A 1S6

E-mail address: pborwein@cecm.sfu.ca
E-mail address: pzhou@cecm.sfu.ca